Tuesday, July 21, 2009

Principles of Operation of DC Motor



DC motors comprise four principal components a) field, b) armature, c) commutator, and d) brushes.
The field is the equivalent of a stator in an AC motor, and the armature functions as the rotor.





The brushes act as contacts between an external power source and the commutator. The design of these carbon brushes allows them to move up and down on a brush holder, to compensate for the irregularities of the commutator surface. Thus they are said to ride the commutator.

Each section of the commutator is connected to an armature coil, essentially a conductive loop of wire. A current induced in the armature coil, by way of the brushes and commutator, creates a magnetic field around the armature. Since the current flowing through the armature flows at a right angle to the field's magnetic lines of flux, the two magnetic forces interact. This interaction creates a third magnetic field that tends to rotate counter clockwise.

The commutator regulates current flow in the armature coils, allowing it to flow in one direction only. Each segment of the commutator is directly connected to an armature coil, so the commutator rotates with the armature. As it rotates, each segment of the commutator is constantly breaking contact with one brush, while simultaneously connecting with the other. Every time contact with a new brush occurs, the flow of current reverses in the armature coil.
The interaction of magnetic force from the armature and field poles is renewed each time the armature completes one-half of a rotation. This causes the armature to rotate for as long as current is maintained in the coils.

No comments:

Post a Comment